- Barnett, Michael

This thesis presents evolution experiments using a bacterial model organism that examine how the processes that generate phenotypic variation interact with the process of natural selection. More specifically, the experiments investigate in what ways the systems that define the variability of an organism – the genotype-phenotype map (G-P map) and the mutational processes by which this map is re-configured – create biases in the production of variation and how these biases both shape and are shaped by the course of adaptive evolution. In Chapter 2, I examine whether the classical Darwinian notion of the ‘survival of the fittest’ is sufficient to understand the phenotypes that arise in the course of adaptation or whether the outcome is also determined by the likelihood that a phenotype is generated by mutation. To this end, I conducted an experiment that repeatedly challenged replicate populations to adapt to the same environment, while continually precluding the evolved adaptive solutions via genetic engineering. By re-playing evolution with an engineered strain in which previously discovered phenotypes were unavailable, evolution was forced to find new viable phenotypic solutions during each round of adaptation. Through this process I found that the phenotypes that evolution initially favoured were not necessarily the fittest possibilities available; latent phenotypes of higher fitness existed yet evolution did not make use of them. Reconstruction of the mutational paths required to reach each phenotype, and evaluation of both fitness and likelihood of each mutational step, revealed that the likelihood of the phenotypes being manifest by mutation played a key role in determining their use by natural selection. These results revealed that adaptive evolution may at times proceed along the most likely mutational path to a sub-optimal phenotype: the ‘survival of the likeliest’. As biases in the production of variation are themselves the product of evolution, the possibility exists that they can be shaped by natural selection to facilitate adaptation – a controversial notion known as the ‘evolution of evolvability’. In Chapter 3, I present an evolution experiment that explicitly selected for evolvability. Specifically, bacterial lineages were challenged to repeatedly activate and then inactivate a single focal phenotype that was in turn beneficial then deleterious across time. Failure to reach the target phenotypic state at any one point resulted in extinction (death) of that lineage and replacement (birth) by a contemporary extant lineage from the population. This lineage- level death-birth process allowed natural selection to operate on an entity reproducing beyond the generation time of individual cells and therefore over a timescale where variation in evolutionary potential, or evolvability, was visible to selection. Through extensive whole-genome sequencing I identified each mutation that occurred along the trajectory of the evolving lineages, revealing how both the G-P map and mutational biases had shaped and were shaped by evolution, as well as how this influenced the success or failure of a given lineage. I found that the most successful lineages increased their evolvability through the establishment of a mutational bias that facilitated rapid switching between the target phenotypic states. Moreover, due… [Read more]

- Shewaramani, Sonal

When organisms are exposed to different environments, the rates and types of mutations that spontaneously arise in each environment can vary due to differing mutagenic pressures imposed by each environment, and these can potentially influence the evolution of the organism. Little is known about the types of mutations that arise when facultative anaerobes are grown in the absence of oxygen. To investigate the effect of oxygen availability on spontaneous mutation at the genome level, we directly measured the mutation rates of bacteria that were grown with and without oxygen under controlled laboratory conditions. To our knowledge, we have obtained the most comprehensive mutation rate estimate of anaerobically grown Escherichia coli, where mutation rates are higher in the absence of oxygen. We found that genomic structural variations, a class of mutations that are typically not investigated due to technical difficulties, were more prevalent under anaerobic growth conditions. We also identified distinct DNA strand biases for substitution types under aerobic and anaerobic growth conditions. Our findings provide new insights into the impact that oxygen availability may have on spontaneous mutations, and the mutational processes that underlie them. [Read more]

- van Dijk, Bram

Eukaryotes and prokaryotes have distinct genome architectures, withmarked differences in genome size, the ratio of coding/non-coding DNA,and the abundance of transposable elements (TEs). As TEs replicate inde-pendently of their hosts, the proliferation of TEs is thought to have drivengenome expansion in eukaryotes. However, prokaryotes also have TEs inintergenic spaces, so why do prokaryotes have small, streamlined genomes?Using anin silicomodel describing the genomes of single-celled asexualorganisms that coevolve with TEs, we show that TEs acquired from theenvironment by horizontal gene transfer can promote the evolution ofgenome streamlining. The process depends on local interactions and isunderpinned by rock–paper–scissors dynamics in which populations ofcells with streamlined genomes beat TEs, which beat non-streamlinedgenomes, which beat streamlined genomes, in continuous and repeatingcycles. Streamlining is maladaptive to individual cells, but improves lineageviability by hindering the proliferation of TEs. Streamlining does not evolvein sexually reproducing populations because recombination partially freesTEs from the deleterious effects they cause.This article is part of the theme issue‘The secret lives of microbial mobilegenetic elements’. [Read more]

- Zhang, Xue‐Xian

Fluorescent pseudomonads represent one of the largest groups of bacteria inhabiting the surfaces of plants, but their genetic composition in planta is poorly understood. Here, we examined the population structure and diversity of fluorescent pseudomonads isolated from sugar beet grown at two geographic locations (Oxford, United Kingdom and Auckland, New Zealand). To seek evidence for niche adaptation, bacteria were sampled from three types of leaves (immature, mature, and senescent) and then characterized using a combination of genotypic and phenotypic analysis. We first performed multilocus sequence analysis (MLSA) of three housekeeping genes (gapA, gltA, and acnB) in a total of 152 isolates (96 from Oxford, 56 from Auckland). The concatenated sequences were grouped into 81 sequence types and 22 distinct operational taxonomic units (OTUs). Significant levels of recombination were detected, particularly for the Oxford isolates (rate of recombination to mutation (r/m) = 5.23 for the whole population). Subsequent ancestral analysis performed in STRUCTURE found evidence of six ancestral populations, and their distributions significantly differed between Oxford and Auckland. Next, their ability to grow on 95 carbon sources was assessed using the Biolog (TM) GN2 microtiter plates. A distance matrix was generated from the raw growth data (A(660)) and subjected to multidimensional scaling (MDS) analysis. There was a significant correlation between substrate utilization profiles and MLSA genotypes. Both phenotypic and genotypic analyses indicated presence of a geographic structure for strains from Oxford and Auckland. Significant differences were also detected for MLSA genotypes between strains isolated from immature versus mature/senescent leaves. The fluorescent pseudomonads thus showed an ecotypic population structure, suggestive of adaptation to both geographic conditions and local plant niches. [Read more]

- Hugoson, Eric

Bacteria adapting to living in a host cell caused the most salient events in the evolution of eukaryotes, namely the seminal fusion with an archaeon, and the emergence of both mitochondrion and chloroplast. A bacterial clade that may hold the key to understanding these events is the deep-branching gammaproteobacterial order Legionellales—containing among others Coxiella and Legionella—of which all known members grow inside eukaryotic cells. Here, by analyzing 35 novel Legionellales genomes mainly acquired through metagenomics, we show that this group is much more diverse than previously thought, and that key host-adaptation events took place very early in its evolution. Crucial virulence factors like the Type IVB secretion (Dot/Icm) system and two shared effector proteins were gained in the last Legionellales common ancestor (LLCA). Many metabolic gene families were lost in LLCA and its immediate descendants, including functions directly and indirectly related to molybdenum metabolism. On the other hand, genome sizes increased in the ancestors of the Legionella genus. We estimate that LLCA lived approximately 1.89 Ga, probably predating the last eukaryotic common ancestor by approximately 0.4–1.0 Gy. These elements strongly indicate that host adaptation arose only once in Legionellales, and that these bacteria were using advanced molecular machinery to exploit and manipulate host cells early in eukaryogenesis. [Read more]

- Colizzi, E.S.

Division of labor can evolve when social groups benefit from the functional specialisation of its members. Recently, a novel means of coordinating division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where functionally specialized cells are generated through large-scale genomic re-organisation. Here, we investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multi-scale mathematical model of bacterial evolution. We let bacteria compete on the basis of their antibiotic production and growth rate in a spatially structured environment. Bacterial behavior is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves that partitions growth-promoting genes and antibiotic-coding genes to distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating antibiotic-producing mutants from non-producing (and weakly-producing) progenitors, in agreement with experimental observations. Mutants protect their colony from competitors but are themselves unable to replicate. We further show that this division of labor enhances the local competition between colonies by promoting antibiotic diversity. These results show that genomic organisation can co-evolve with genomic instabilities to enable reproductive division of labor.Motivation of current work Division of labor can evolve if trade-offs are present between different traits. To organize a division of labor, the genome architecture must evolve to enable differentiated cellular phenotypes. Cell differentiation may be coordinated through gene regulation, as occurs during embryonic development. Alternatively, when mutation rates are high, mutations themselves can guide cell and functional differentiation; however, how this evolves and is organized at the genome level remains unclear. Here, using a model of antibiotic-producing bacteria based on multicellular Streptomyces, we show that if antibiotic production trades-off with replication, genome architecture evolves to support a mutation-driven division of labor. These results are consistent with recent experimental observations and may underlie division of labour in many bacterial groups.Competing Interest StatementThe authors have declared no competing interest. [Read more]

- van Dijk, Bram

Bacteria and other prokaryotes evolve primarily through rapid changes in their gene content by quickly losing and gaining genes whenever an ecological opportunity emerges. As gene loss and horizontal gene transfer (HGT) appear to be the most common events across the prokaryotic tree of life, we need to think beyond gradual sequence evolution if we wish to understand the microbial world. Especially genes that reside on mobile genetic elements (MGEs) may spread much more rapidly through a microbial population than genes that reside on the bacterial chromosome. This raises the question: why are some genes associated with MGEs, while others are not? Here, I briefly review a recently proposed class of genes for which we have coined the term “rescuable genes”. The fitness effect of carrying these genes is so small, either constantly or on average, that they are prone to be lost from a microbial population. I argue that HGT, even when costly to the individual cells, may play an important role in maintaining these rescuable genes in microbial communities. [Read more]

- Wortel, Meike T.

Evolution has traditionally been a historical field of study and predicting evolution into the future has long been considered challenging or even impossible. However, evolutionary predictions are increasingly being made and used in many situations in medicine, agriculture, biotechnology and conservation biology. Because every field uses their own language and makes predictions from their background, researchers are not always aware of the breadth of evolutionary predictions. Evolutionary predictions may be used for several purposes such as to prepare for the future, to try and change the course of evolution or simply to determine how well we understand an evolutionary system. Exactly what aspect of an evolving population we want to predict, such as the most common genotype, average or individual fitness, or population size, depends on the situation. In addition, there are many uses of evolutionary predictions that may not be recognized as such. Therefore, the main goal of this review is to increase awareness of methods and data that are used to make these predictions in different fields, by showing the breadth of situations in which evolutionary predictions are made. We describe how evolutionary predictions are highly diverse, but nevertheless share a common structure described by the predictive scope, horizon, precision and risk. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation by microorganisms, we discuss the methods for predicting evolution, factors that affect predictability, and how predictions can be used to prevent unwanted evolution or promote beneficial evolution. We hope that this review will increase collaboration between fields by creating a common language for evolutionary predictions. [Read more]

- van Dijk, Bram

In the field of ecology and evolution, a treasure trove of data has revealed the importance ofspatial structure and biogeography. Despite these rich data sets, our conceptual understand-ing of how spatial structure shapes biodiversity, pathogenicity, and microbial pangenomesis lagging behind. For example, we only have a limited understanding of how interactionsat the microscale (molecular machinery, bacteriophages, metabolism) scale up to define eco-evolutionary dynamics of microbial communities (Rainey & Quistad, 2020) and metaorganisms(Jaspers et al., 2019). To develop our intuition on these systems, I argue we need to embracemultiple levels and structural complexity in our models.Cacatoois a toolbox developed tomake it easy to design, explore, and share simulations of such systems. Simulations can beinteractively explored from a web browser, allowing the user to change parameters and observegraphs in real-time.Cacatoois designed to be both easy-to-use and extendable, making itsuitable for beginners and experts alike. Because it requires no installation and works on prac-tically every computer, it is also ideal for teaching purposes and student projects. In summary,Cacatooprovides opportunities for everyone to get involved in spatially structured modelling [Read more]

- E, Juncheng

We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase–Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins. [Read more]

- Paulson, Amber R.

The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents. [Read more]

- Park, Hye Jin

Compared to their eukaryotic counterparts, bacterial genomes are small and contain extremely tightly packed genes. Therefore, discovering a large number of short repetitive sequences in the genomes of Pseudomonads and Enterobacteria is unexpected. These sequences can independently replicate in the host genome and form populations that persist for millions of years. Here we model the interactions of intragenomic sequence populations with the bacterial host. In a simple model, sequence populations either expand until they drive the host to extinction or the sequence population gets purged from the genome. Including horizontal gene transfer does not change the qualitative outcome of the model and leads to the extinction of the sequence population. However, a sequence population can be stably maintained, if each sequence provides a benefit that decreases with increasing sequence population size. But concurrently, the replication of the sequence population needs to be costly to the host. Surprisingly, in regimes where horizontal gene transfer plays a role, the benefit conferred by the sequence population does not have to exceed the damage it causes. Together, our analyses provide a plausible scenario for the persistence of sequence populations in bacterial genomes. More importantly, we hypothesize a limited biologically relevant parameter range, which can be tested in future experiments. [Read more]

- Fortmann-Grote, Carsten

The Jupyter notebook format enables seamless coexistence of computer program code, documentation, and execution, as well as interactive visualization and discussion of results in one document and provides a user-friendly work environment. We will give an overview of the Jupyter ecosystem of tools and services and discuss how Jupyter enhances reproducibility in data intensive research. [Read more]

- Opašić, Luka

Cancer is a group of complex diseases characterized by excessive cell proliferation, invasion, anddestruction of the surrounding tissue (Vinay Kumar,2017). Its high division and mutation rateslead to excessive genetic diversity among tumour cells (intra tumour genetic heterogeneity).As a consequence, tumours can adapt very efficiently to environmental pressures, in particularto cancer therapy (Turajlic, Sottoriva, Graham, & Swanton,2019). This process is known assomatic evolution of cancer.Throughout most of its existence a tumour is inaccessible to direct observation and experi-mental evaluation through genetic sequencing of tumour samples. Therefore, computationalmodelling can be useful to study many aspects of cancer. Examples where theoretical modelscan be of great use include (i) early carcinogenesis, as lesions are clinically observable whenthey already contain millions of cells, (ii) seeding of metastases, and (iii) cancer cell dormancy(Altrock, Liu, & Michor,2015). [Read more]

- Quistad, Steven D.

Microbial communities underpin the Earth's biological and geochemical processes, but their complexity hampers understanding. Motivated by the challenge of diversity and the need to forge ways of capturing dynamical behaviour connecting genes to function, biologically independent experimental communities comprising hundreds of microbial genera were established from garden compost and propagated on nitrogen-limited minimal medium with cellulose (paper) as sole carbon source. After 1 year of bi-weekly transfer, communities retained hundreds of genera. To connect genes to function, we used a simple experimental manipulation that involved the periodic collection of selfish genetic elements (SGEs) from separate communities, followed by pooling and redistribution across communities. The treatment was predicted to promote amplification and dissemination of SGEs and thus horizontal gene transfer. Confirmation came from comparative metagenomics, which showed the substantive movement of ecologically significant genes whose dynamic across space and time could be followed. Enrichment of genes implicated in nitrogen metabolism, and particularly ammonification, prompted biochemical assays that revealed a measurable impact on community function. Our simple experimental strategy offers a conceptually new approach for unravelling dynamical processes affecting microbial community function. [Read more]

- Rose, Caroline J.

The evolutionary transition to multicellularity has occurred on numerous occasions, but transi- tions to complex life forms are rare. Here, using experimental bacterial populations as proxies for nascent multicellular organisms, we manipulate ecological factors shaping the evolution of groups. Groups were propagated under regimes requiring reproduction via a life cycle replete with devel- opmental and dispersal (propagule) phases, but in one treatment lineages never mixed, whereas in a second treatment, cells from different lineages experienced intense competition during the disper- sal phase. The latter treatment favoured traits promoting cell growth at the expense of traits underlying group fitness – a finding that is supported by results from a mathematical model. Our results show that the transition to multicellularity benefits from ecological conditions that main- tain discreteness not just of the group (soma) phase, but also of the dispersal (germline) phase. [Read more]

- E, J. C.

Experiments conducted in large scientific research infrastructures, such as synchrotrons, free electron lasers and neutron sources become increasingly complex. Such experiments, often investigating complex physical systems, are usually performed under strict time limitations and may depend critically on experimental parameters. To prepare and analyze these complex experiments, a virtual laboratory which provides start-to-end simulation tools can help experimenters predict experimental results under real or close to real instrument conditions. As a part of the PaNOSC (Photon and Neutron Open Science Cloud) project, the VIrtual Neutron and x-raY Laboratory (VINYL) is designed to be a cloud service framework to implement start-to-end simulations for those scientific facilities. In this paper, we present an introduction of the virtual laboratory framework and discuss its applications to the design and optimization of experiment setups as well as the estimation of experimental artifacts in an X-ray experiment. [Read more]

- Black, Andrew J.

Evolutionary transitions in individuality are central to the emergence of biological complexity. Recent experiments provide glimpses of processes underpinning the transition from single cells to multicellular life and draw attention to the critical role of ecology. Here we emphasise this ecological dimension and argue that its current absence from theoretical frameworks hampers development of general explanatory solutions. Using mechanistic mathematical models, we show how a minimal ecological structure comprised of patchily distributed resources and between patch dispersal can scaffold Darwinian-like properties on collectives of cells. This scaffolding causes cells to participate directly in the process of evolution by natural selection as if they were members of multicellular collectives, with collectives participating in a death-birth process arising from the interplay between the timing of dispersal events and the rate of resource utilisation by cells. When this timescale is sufficiently long and new collectives are founded by single cells, collectives experience conditions that favour evolution of a reproductive division of labour. Together our simple model makes explicit key events in the major evolutionary transition to multicellularity. It also makes predictions concerning the life history of certain pathogens and serves as an ecological recipe for experimental realisation of evolutionary transitions. [Read more]

- Bhave, Devika

Adaptation of organisms to continuously changing environments includes the generation of genic novelty in their genomes through mechanisms such as de novo gene evolution, duplication, fusion, lateral gene transfer, etc. De novo gene evolution is a mechanism, wherein new gene functions can evolve from previously non-coding sequences, which are essentially random stretches of nucleotides. Several studies have explored the role of such random sequences as templates for evolutionary innovation. This included a systematic study, where a library of random coding sequences was expressed in Escherichia coli and differential growth was measured to assess fitness effects of individual sequences. Each random sequence from the library was categorized into negative, positive or neutral based on its change in abundance in the population across time. In this thesis, I analyse the effects of individual clones derived from this screen. In order to study effects of random sequences on the fitness of the host, I cloned representative variants from each category into E. coli strains using a multicopy plasmid vector. In the first part of the thesis, I demonstrate that expression of negative random peptides confers a fitness disadvantage (deleterious) in E. coli, followed by a growth recovery. Upon further investigation, I find that these peptides can elicit a stress response in the host instantaneously upon expression. The highly deleterious phenotype can thus be compensated in the host. In addition, I was able to isolate suppressor-of-phenotype clones. Re-sequencing of the suppressors together with each of the ancestor clones helped identify interaction partners for the deleterious peptides. In the second part, I show two mechanisms that the host uses to adapt to deleterious peptide expression: (a) plasmid copy number control by inactivation of the pcnB gene and (b) expression control through inactivation of the LacI inducer binding domain. In the third part of the thesis, I show that the positive random peptides confer competitive fitness advantage only under stressful conditions, for example, an elevated temperature. In conclusion, I show that random sequences indeed affect fitness of the host possibly through targeting specific genes or proteins. This study provides experimental evidence on how random sequences could serve as drivers of de novo gene evolution. [Read more]

- Rainey, Paul B.

The challenge of moving beyond descriptions of microbial community composition to the point where understanding underlying eco-evolutionary dynamics emerges is daunting. While it is tempting to simplify through use of model communities composed of a small number of types, there is a risk that such strategies fail to capture processes that might be specific and intrinsic to complexity of the community itself. Here, we describe approaches that embrace this complexity and show that, in combination with metagenomic strategies, dynamical insight is increasingly possible. Arising from these studies is mounting evidence of rapid eco-evolutionary change among lineages and a sense that processes, particularly those mediated by horizontal gene transfer, not only are integral to system function, but are central to long-term persistence. That such dynamic, systems-level insight is now possible, means that the study and manipulation of microbial communities can move to new levels of inquiry. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’. [Read more]

- Doulcier, Guilhem

Interactions among microbial cells can generate new chemistries and functions, but exploitation requires establishment of communities that reliably recapitulate community-level phenotypes. Using mechanistic mathematical models, we show how simple manipulations to population structure can exogenously impose Darwinian-like properties on communities. Such imposition causes communities to participate directly in the process of evolution by natural selection and drives the evolution of cell-level interactions to the point where, despite underlying stochasticity, derived communities give rise to offspring communities that faithfully re-establish parental phenotype. The mechanism (developmental correction) is akin to a developmental process that arises from density dependent interactions among cells. Knowledge of ecological factors affecting evolution of developmental correction has implications for understanding the evolutionary origin of egalitarian transitions in individuality, symbioses, and for top-down engineering of microbial communities. [Read more]

- Zeng, Quan

Bacterial etiolation and decline (BED), caused by Acidovorax avenae, is an emerging disease of creeping bentgrass on golf courses in the United States. We performed the first comprehensive analysis of A. avenae on a nationwide collection of turfgrass- and maize-pathogenic A. avenae. Surprisingly, our results reveal that the turfgrass-pathogenic A. avenae in North America are not only highly divergent but also belong to two distinct phylogroups. Both phylogroups specifically infect turfgrass but are more closely related to maize pathogens than to each other. This suggests that, although the disease is only recently reported, it has likely been infecting turfgrass for a long time. To identify a genetic basis for the host specificity, we searched for genes closely related among turfgrass strains but distantly related to their homologs from maize strains. We found a cluster of 11 such genes generated by three ancient recombination events within the type III secretion system (T3SS) pathogenicity island. Ever since the recombination, the cluster has been conserved by strong purifying selection, hinting at its selective importance. Together our analyses suggest that BED is an ancient disease that may owe its host specificity to a highly conserved cluster of 11 T3SS genes. © 2017 The American Phytopathological Society. [Read more]

- Bertels, Frederic

Mobile genetic elements can be found in almost all genomes. Possibly the most common nonautonomous mobile genetic elements in bacteria are repetitive extragenic palindromic doublets forming hairpins (REPINs) that can occur hundreds of times within a genome. The sum of all REPINs in a genome can be viewed as an evolving population because REPINs replicate and mutate. In contrast to most other biological populations, we know the exact composition of the REPIN population and the sequence of each member of the population. Here, we model the evolution of REPINs as quasispecies. We fit our quasispecies model to 10 different REPIN populations from 10 different bacterial strains and estimate effective duplication rates. Our estimated duplication rates range from ~5 3 1029 to 15 3 1029 duplications per bacterial generation per REPIN. The small range and the low level of the REPIN duplication rates suggest a universal trade-off between the survival of the REPIN population and the reduction of the mutational load for the host genome. The REPIN populations we investigated also possess features typical of other natural populations. One population shows hallmarks of a population that is going extinct, another population seems to be growing in size, and we also see an example of competition between two REPIN populations. © 2017 by the Genetics Society of America. [Read more]

- Yıldırım, Yeşerin

Pleurobranchaea maculata is a rarely studied species of the Heterobranchia found throughout the south and western Pacific–and recently recorded in Argentina–whose population genetic structure is unknown. Interest in the species was sparked in New Zealand following a series of dog deaths caused by ingestions of slugs containing high levels of the neurotoxin tetrodotoxin. Here we describe the genetic structure and demographic history of P. maculata populations from five principle locations in New Zealand based on extensive analyses of 12 microsatellite loci and the COI and CytB regions of mitochondrial DNA (mtDNA). Microsatellite data showed significant differentiation between northern and southern populations with population structure being associated with previously described regional variations in tetrodotoxin concentrations. However, mtDNA sequence data did not support such structure, revealing a star-shaped haplotype network with estimates of expansion time suggesting a population expansion in the Pleistocene era. Inclusion of publicly available mtDNA sequence sea slugs from Argentina did not alter the star-shaped network. We interpret our data as indicative of a single founding population that fragmented following geographical changes that brought about the present day north-south divide in New Zealand waters. Lack of evidence of cryptic species supports data indicating that differences in toxicity of individuals among regions are a consequence of differences in diet. [Read more]

- Bertels, Frederic

Convergent evolution describes the process of different populations acquiring similar phenotypes or genotypes. Complex organisms with large genomes only rarely and only under very strong selection converge to the same genotype. In contrast, independent virus populations with very small genomes often acquire identical mutations. Here we test the hypothesis of whether convergence in early HIV-1 infection is common enough to serve as an indicator for selection. To this end, we measure the number of convergent mutations in a well-studied dataset of full-length HIV-1 env genes sampled from HIV-1 infected individuals during early infection. We compare this data to a neutral model and find an excess of convergent mutations. Convergent mutations are not evenly distributed across the env gene, but more likely to occur in gp41, which suggests that convergent mutations provide a selective advantage and hence are positively selected. In contrast, mutations that are only found in an HIV-1 population of a single individual are significantly affected by purifying selection. Our analysis suggests that comparisons between convergent and private mutations with neutral models allow us to identify positive and negative selection in small viral genomes. Our results also show that selection significantly shapes HIV-1 populations even before the onset of the adaptive immune system. [Read more]

- Pichugin, Yuriy

Author summary Mode of reproduction is a defining trait of all organisms, including colonial bacteria and multicellular organisms. To produce offspring, aggregates must fragment by splitting into two or more groups. The particular way that a given group fragments defines the life cycle of the organism. For instance, insect colonies can reproduce by splitting or by producing individuals that found new colonies. Similarly, some colonial bacteria propagate by fission or by releasing single cells, while others split in highly sophisticated ways; in multicellular organisms reproduction typically proceeds via a single-cell bottleneck phase. The space of possibilities for fragmentation is so vast that an exhaustive analysis seems daunting. Focusing on fragmentation modes of a simple kind we parametrise all possible modes of group fragmentation and identify those modes leading to the fastest population growth rate. Two kinds of life cycle dominate: one involving division into two equal size groups, and the other involving production of a unicellular propagule. The prevalence of these life cycles in nature is consistent with our null model and suggests that benefits accruing from population growth rate alone may have shaped the evolution of fragmentation mode. [Read more]

- Czuppon, Peter

Sexually reproducing populations with self-incompatibility bear the cost of limiting potential mates to individuals of a different type. Rare mating types escape this cost since they are unlikely to encounter incompatible partners, leading to the deterministic prediction of continuous invasion by new mutants and an ever increasing number of types. However, rare types are also at an increased risk of being lost by random drift. Calculating the number of mating types that a population can maintain requires consideration of both the deterministic advantages and the stochastic risks. By comparing the relative importance of selection and drift, we show that a population of size N can maintain a maximum of approximately N 1/3 mating types. Although the number of mating types in a population is quite stable, the rare type advantage promotes turnover of types. We derive explicit formulas for both the invasion and turnover probabilities in finite populations. Being vanishingly rare is thus a blessing and a curse associated with both universal compatibility and a high risk of extinction. [Read more]

- Gerth, M.L.

Cupins form one of the most functionally diverse superfamilies of proteins, with members performing a wide range of catalytic, non-catalytic, and regulatory functions. HutD is a predicted bicupin protein that is involved in histidine utilization (Hut) in Pseudomonas species. Previous genetic analyses have suggested that it limits the upper level of Hut pathway expression, but its mechanism of action is unknown. Here, we have determined the structure of PfluHutD at 1.74 Å resolution in several crystallization conditions, and identified N-formyl-l-glutamate (FG, a Hut pathway intermediate) as a potential ligand in vivo. Proteins 2017; 85:1580–1588. © 2017 Wiley Periodicals, Inc. [Read more]

- Colombi, Elena

Horizontal gene transfer can precipitate rapid evolutionary change. In 2010 the global pandemic of kiwifruit canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) reached New Zealand. At the time of introduction, the single clone responsible for the outbreak was sensitive to copper, however, analysis of a sample of isolates taken in 2015 and 2016 showed that a quarter were copper resistant. Genome sequences of seven strains showed that copper resistance – comprising czc/cusABC and copABCD systems – along with resistance to arsenic and cadmium, was acquired via uptake of integrative conjugative elements (ICEs), but also plasmids. Comparative analysis showed ICEs to have a mosaic structure, with one being a tripartite arrangement of two different ICEs and a plasmid that were isolated in 1921 (USA), 1968 (NZ) and 1988 (Japan), from P. syringae pathogens of millet, wheat and kiwifruit respectively. Two of the Psa ICEs were nearly identical to two ICEs isolated from kiwifruit leaf colonists prior to the introduction of Psa into NZ. Additionally, we show ICE transfer in vitro and in planta, analyze fitness consequences of ICE carriage, capture the de novo formation of novel recombinant ICEs, and explore ICE host-range. [Read more]

- Lind, Peter A.

Model microbial systems provide opportunity to understand the genetic bases of ecological traits, their evolution, regulation and fitness contributions. Experimental populations of Pseudomonas fluorescens rapidly diverge in spatially structured microcosms producing a range of surface-colonising forms. Despite divergent molecular routes, wrinkly spreader (WS) niche specialist types overproduce a cellulosic polymer allowing mat formation at the air–liquid interface and access to oxygen. Given the range of ways by which cells can form mats, such phenotypic parallelism is unexpected. We deleted the cellulose-encoding genes from the ancestral genotype and asked whether this mutant could converge on an alternate phenotypic solution. Two new traits were discovered. The first involved an exopolysaccharide encoded by pgaABCD that functions as cell–cell glue similar to cellulose. The second involved an activator of an amidase (nlpD) that when defective causes cell chaining. Both types form mats, but were less fit in competition with cellulose-based WS types. Surprisingly, diguanylate cyclases linked to cellulose overexpression underpinned evolution of poly-beta-1,6-N-acetyl-d-glucosamine (PGA)-based mats. This prompted genetic analyses of the relationships between the diguanylate cyclases WspR, AwsR and MwsR, and both cellulose and PGA. Our results suggest that c-di-GMP regulatory networks may have been shaped by evolution to accommodate loss and gain of exopolysaccharide modules facilitating adaptation to new environments.The ISME Journal advance online publication, 2 December 2016; doi:10.1038/ismej.2016.157. © 2016 International Society for Microbial Ecology [Read more]

- McCann, Honour C.

Recurring epidemics of kiwifruit (Actinidia spp.) bleeding canker disease are caused by Pseudomonas syringae pv. actinidiae (Psa). In order to strengthen understanding of population structure, phylogeography, and evolutionary dynamics, we isolated Pseudomonas from cultivated and wild kiwifruit across six provinces in China. Based on the analysis of 80 sequenced Psa genomes, we show that China is the origin of the pandemic lineage but that strain diversity in China is confined to just a single clade. In contrast, Korea and Japan harbor strains from multiple clades. Distinct independent transmission events marked introduction of the pandemic lineage into New Zealand, Chile, Europe, Korea, and Japan. Despite high similarity within the core genome and minimal impact of within-clade recombination, we observed extensive variation even within the single clade from which the global pandemic arose. [Read more]

- Liu, Yunhao

The two-component system CbrAB is the principal regulator for cellular metabolic balance in Pseudomonas fluorescens SBW25 and is necessary for growth on many substrates including xylose. To understand the regulatory linkage between CbrAB and genes for xylose utilization (xut), we performed transposon mutagenesis of ΔcbrB to select for Xut+ suppressors. This led to identification of crc and hfq. Subsequent genetic and biochemical analysis showed that Crc and Hfq are key mediators of succinate-provoked carbon catabolite repression (CCR). Specifically, Crc/Hfq sequentially bind to mRNAs of both the transcriptional activator and structural genes involved in xylose catabolism. However, in the absence of succinate, repression is relieved through competitive binding by two ncRNAs, CrcY and CrcZ, whose expression is activated by CbrAB. These findings provoke a model for CCR in which it is assumed that crc and hfq are functionally complementary, whereas crcY and crcZ are genetically redundant. Inactivation of either crcY or crcZ produced no effects on bacterial fitness in laboratory media, however, results of mathematical modelling predict that the co-existence of crcY and crcZ requires separate functional identity. Finally, we provide empirical evidence that CCR is advantageous in nutrient-complex environments where preferred carbon sources are present at high concentrations but fluctuate in their availability. © 2017 John Wiley Sons Ltd [Read more]

- Bertels, Frederic

Selfish genetic elements, suchas insertion sequences and transposons are found inmost genomes. Transposons are usually identifiable by their high copy number within genomes. In contrast, REP-associated tyrosine transposases (RAYTs), a recently described class of bacterial transposase, are typically present at just one copy per genome. This suggests that RAYTs no longer copy themselves and thus they no longer function as a typical transposase. Motivated by this possibility we interrogated thousands of fully sequenced bacterial genomes in order to determine patterns of RAYT diversity, their distribution across chromosomes and accessory elements, and rate of duplication.RAYTs encompass exceptionaldiversity andare divisible into at least five distinct groups. They possess featuresmore similar to housekeeping genes than insertion sequences, are predominantly vertically transmitted and have persisted through evolutionary timeto thepointwherethey arenowfoundin24%of all species forwhich at leastonefully sequencedgenomeis available.Overall, the genomic distributionof RAYTs suggests that they have been cooptedby host genomesto perform a function that benefits the host cell. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. [Read more]

- Farr, Andrew D.

Knowledge of adaptive processes encompasses understanding the emergence of new genes. Computational analyses of genomes suggest that new genes can arise by domain swapping; however, empirical evidence has been lacking. Here we describe a set of nine independent deletion mutations that arose during selection experiments with the bacterium Pseudomonas fluorescens in which the membrane-spanning domain of a fatty acid desaturase became translationally fused to a cytosolic di-guanylate cyclase, generating an adaptive 'wrinkly spreader' phenotype. Detailed genetic analysis of one gene fusion shows that the mutant phenotype is caused by relocalization of the di-guanylate cyclase domain to the cell membrane. The relative ease by which this new gene arose, along with its functional and regulatory effects, provides a glimpse of mutational events and their consequences that are likely to have a role in the evolution of new genes. © 2017 The Author(s). [Read more]

- Straub, Christina

Interactions between commensal microbes and invading pathogens are understudied, despite their likely effects on pathogen population structure and infection processes. We describe the population structure and genetic diversity of a broad range of co-occurring Pseudomonas syringae isolated from infected and uninfected kiwifruit during an outbreak of bleeding canker disease caused by P. syringae pv. actinidiae (Psa) in New Zealand. Overall population structure was clonal and affected by ecological factors including infection status and cultivar. Most isolates are members of a new clade in phylogroup 3 (PG3a), also present on kiwifruit leaves in China and Japan. Stability of the polymorphism between pathogenic Psa and commensal P. syringae PG3a isolated from the same leaf was tested using reciprocal invasion from rare assays in vitro and in planta. P. syringae G33C (PG3a) inhibited Psa NZ54, while the presence of Psa NZ54 enhanced the growth of P. syringae G33C. This effect could not be attributed to virulence activity encoded by the Type 3 secretion system of Psa. Together our data contribute toward the development of an ecological perspective on the genetic structure of pathogen populations. © 2018 Society for Applied Microbiology and John Wiley Sons Ltd. [Read more]

- Lind, Peter A.

Predicting evolutionary change poses numerous challenges. Here we take advantage of the model bacterium Pseudomonas fluorescens in which the genotype-to-phenotype map determining evolution of the adaptive ‘wrinkly spreader’ (WS) type is known. We present mathematical descriptions of three necessary regulatory pathways and use these to predict both the rate at which each mutational route is used and the expected mutational targets. To test predictions, mutation rates and targets were determined for each pathway. Unanticipated mutational hotspots caused experimental observations to depart from predictions but additional data led to refined models. A mismatch was observed between the spectra of WS-causing mutations obtained with and without selection due to low fitness of previously undetected WS-causing mutations. Our findings contribute toward the development of mechanistic models for forecasting evolution, highlight current limitations, and draw attention to challenges in predicting locus-specific mutational biases and fitness effects. [Read more]

- Remigi, Philippe

Observations of bacteria at the single-cell level have revealed many instances of phenotypic heterogeneity within otherwise clonal populations, but the selective causes, molecular bases, and broader ecological relevance remain poorly understood. In an earlier experiment in which the bacterium Pseudomonas fluorescens SBW25 was propagated under a selective regime that mimicked the host immune response, a genotype evolved that stochastically switched between capsulation states. The genetic cause was a mutation in carB that decreased the pyrimidine pool (and growth rate), lowering the activation threshold of a preexisting but hitherto unrecognized phenotypic switch. Genetic components surrounding bifurcation of UTP flux toward DNA/RNA or UDP-glucose (a precursor of colanic acid forming the capsules) were implicated as key components. Extending these molecular analyses—and based on a combination of genetics, transcriptomics, biochemistry, and mathematical modeling—we show that pyrimidine limitation triggers an increase in ribosome biosynthesis and that switching is caused by competition between ribosomes and CsrA/RsmA proteins for the mRNA transcript of a positively autoregulated activator of colanic acid biosynthesis. We additionally show that in the ancestral bacterium the switch is part of a program that determines stochastic entry into a semiquiescent capsulated state, ensures that such cells are provisioned with excess ribosomes, and enables provisioned cells to exit rapidly from stationary phase under permissive conditions. [Read more]

- Yulo, P.R.J.

Cell shape is a fundamental property in bacterial kingdom. MreB is a protein that determines rod-like shape, and its deletion is generally lethal. Here, we deleted the mreB homolog from rod-shaped bacterium Pseudomonas fluorescens SBW25 and found that ΔmreB cells are viable, spherical cells with a 20% reduction in competitive fitness and high variability in cell size. We show that cell death, correlated with increased levels of elongation asymmetry between sister cells, accounts for the large fitness reduction. After a thousand generations in rich media, the fitness of evolved ΔmreB lines was restored to ancestral levels and cells regained symmetry and ancestral size, while maintaining spherical shape. Using population sequencing, we identified pbp1A, coding for a protein involved in cell wall synthesis, as the primary target for compensatory mutations of the ΔmreB genotype. Our findings suggest that reducing elongasome associated PBPs aids in the production of symmetric cells when MreB is absent. [Read more]

- Hugoson, Eric

Metagenomics and single-cell genomics have revolutionized the study of microorganisms, increasing our knowledge of microbial genomic diversity by orders of magnitude. A major issue pertaining to metagenome-assembled genomes (MAGs) and single-cell amplified genomes (SAGs) is to estimate their completeness and redundancy. Most approaches rely on counting conserved gene markers. In miComplete, we introduce a weighting strategy, where we normalize the presence/absence of markers by their median distance to the next marker in a set of complete reference genomes. This approach alleviates biases introduced by the presence/absence of shorter DNA pieces containing many markers, e.g. ribosomal protein operons.miComplete is written in Python 3 and released under GPLv3. Source code and documentation are available at data are available at Bioinformatics online. [Read more]

- Rogers, David W.

Genome-wide sequence divergence between populations can cause hybrid sterility through the action of the anti-recombination system, which rejects crossover repair of double strand breaks between nonidentical sequences. Because crossovers are necessary to ensure proper segregation of homologous chromosomes during meiosis, the reduced recombination rate in hybrids can result in high levels of nondisjunction and therefore low gamete viability. Hybrid sterility in interspecific crosses of Saccharomyces yeasts is known to be associated with such segregation errors, but estimates of the importance of nondisjunction to postzygotic reproductive isolation have been hampered by difficulties in accurately measuring nondisjunction frequencies. Here, we use spore-autonomous fluorescent protein expression to quantify nondisjunction in both interspecific and intraspecific yeast hybrids. We show that segregation is near random in interspecific hybrids. The observed rates of nondisjunction can explain most of the sterility observed in interspecific hybrids through the failure of gametes to inherit at least one copy of each chromosome. Partially impairing the anti-recombination system by preventing expression of the RecQ helicase SGS1 during meiosis cuts nondisjunction frequencies in half. We further show that chromosome loss through nondisjunction can explain nearly all of the sterility observed in hybrids formed between two populations of a single species. The rate of meiotic nondisjunction of each homologous pair was negatively correlated with chromosome size in these intraspecific hybrids. Our results demonstrate that sequence divergence is not only associated with the sterility of hybrids formed between distantly related species but may also be a direct cause of reproductive isolation in incipient species. [Read more]

- Bertels, Frederic

One of the most intriguing puzzles in biology is the degree to which evolution is repeatable. The repeatability of evolution, or parallel evolution, has been studied in a variety of model systems, but has rarely been investigated with clinically relevant viruses. To investigate parallel evolution of HIV-1, we passaged two replicate HIV-1 populations for almost one year in each of two human T-cell lines. For each of the four evolution lines, we determined the genetic composition of the viral population at nine time points by deep sequencing the entire genome. Mutations that were carried by the majority of the viral population accumulated continuously over one year in each evolution line. Many majority mutations appeared in more than one evolution line, i.e. our experiments showed an extreme degree of parallel evolution. In one of the evolution lines, 62% of the majority mutations also occur in another line. The parallelism impairs our ability to reconstruct the evolutionary history by phylogenetic methods. We show that one can infer the correct phylogenetic topology by including minority mutations in our analysis. We also find that mutation diversity at the beginning of the experiment is predictive of the frequency of majority mutations at the end of the experiment. [Read more]

- Gallie, Jenna

Repeated evolution of functionally similar phenotypes is observed throughout the tree of life. The extent to which the underlying genetics are conserved remains an area of considerable interest. Previously, we reported the evolution of colony switching in two independent lineages of Pseudomonas fluorescens SBW25. The phenotypic and genotypic bases of colony switching in the first lineage (Line 1) have been described elsewhere. Here, we deconstruct the evolution of colony switching in the second lineage (Line 6). We show that, as for Line 1, Line 6 colony switching results from an increase in the expression of a colanic acid-like polymer (CAP). At the genetic level, nine mutations occur in Line 6. Only one of these—a nonsynonymous point mutation in the housekeeping sigma factor rpoD—is required for colony switching. In contrast, the genetic basis of colony switching in Line 1 is a mutation in the metabolic gene carB. A molecular model has recently been proposed whereby the carB mutation increases capsulation by redressing the intracellular balance of positive (ribosomes) and negative (RsmAE/CsrA) regulators of a positive feedback loop in capsule expression. We show that Line 6 colony switching is consistent with this model; the rpoD mutation generates an increase in ribosomal gene expression, and ultimately an increase in CAP expression. [Read more]

- Rainey, Paul B.

Over the last two decades interest in direct realisation of evolutionary process and the possibilities presented by real time evolution experiments with microbes have escalated. Long-term selection experiments with bacteria have made increasingly transparent the process of evolution by natural selection. In this short article we consider what next for the field and do so by highlighting two areas of interest: the genotype-to-phenotype map and the constraints it imposes on evolution, and studies on major evolutionary transitions and in particular the importance of selection working over more than one timescale. The latter we discuss in light of new technologies that allow imposition of Darwinian properties on populations and communities and how this allows exploration of new avenues of research. We conclude by commenting on microbial communities and the operation of evolutionary processes that are likely intrinsic — and specific — to communities. © 2017 Elsevier Ltd [Read more]

- Ardré, Maxime

Cellulose over-producing wrinkly spreader mutants of Pseudomonas fluorescens SBW25 have been the focus of much investigation, but conditions promoting the production of cellulose in ancestral SBW25, its effects and consequences have escaped in-depth investigation through lack of in vitro phenotype. Here, using a custom built device, we reveal that in static broth microcosms ancestral SBW25 encounters environmental signals at the air-liquid interface that activate, via three diguanylate cyclase-encoding pathways (Wsp, Aws and Mws), production of cellulose. Secretion of the polymer at the meniscus leads to modification of the environment and growth of numerous micro-colonies that extend from the surface. Accumulation of cellulose and associated microbial growth leads to Rayleigh-Taylor instability resulting in bioconvection and rapid transport of water-soluble products over tens of millimetres. Drawing upon data we build a mathematical model that recapitulates experimental results and captures the interactions between biological, chemical and physical processes.IMPORTANCE This work reveals a hitherto unrecognized behaviour that manifests at the air-liquid interface, which depends on production of cellulose, and hints to undiscovered dimensions to bacterial life at surfaces. Additionally, the study links activation of known diguanylate cyclase-encoding pathways to cellulose expression and to signals encountered at the meniscus. Further significance stems from recognition of the consequences of fluid instabilities arising from surface production of cellulose for transport of water-soluble products over large distances. [Read more]

- Bons, Eva

The evolution of HIV during acute infection is often considered a neutral process. Recent analysis of sequencing data from this stage of infection, however, showed high levels of shared mutations between independent viral populations. This suggests that selection might play a role in the early stages of HIV infection. We adapted an existing model for random evolution during acute HIV-infection to include selection. Simulations of this model were used to fit a global mutational fitness effects distribution to previously published sequencing data of the env gene of individuals with acute HIV infection. Measures of sharing between viral populations were used as summary statistics to compare the data to the simulations. We confirm that evolution during acute infection is significantly different from neutral. The distribution of mutational fitness effects is best fit by a distribution with a low, but significant fraction of beneficial mutations and a high fraction of deleterious mutations. While most mutations are neutral or deleterious in this model, about 5% of mutations are beneficial. These beneficial mutations will, on average, result in a small but significant increase in fitness. When assuming no epistasis, this indicates that, at the moment of transmission, HIV is near, but not on the fitness peak for early infection. [Read more]

Scroll to Top